Abstract

This paper deals with multivariable pitch control design for wind turbines, including load reducing control objectives. Different design approaches, including collective and cyclic pitch, and robustness aspects are discussed. A control design with decoupled controllers for collective and cyclic pitch is worked out in detail, based on the H∞ norm minimization approach. The control design is verified by simulations with a full nonlinear model of the wind turbine, showing the potential of multivariable pitch control to actively increase damping of the first axial tower bending mode and to reduce 1p fluctuations in blade root bending moments. Multivariable control design provides a convenient way of including additional load reducing objectives into the pitch controller of wind turbines. Fatigue loading of certain components, as tower and blades, could be reduced significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.