Abstract

Virtual Wedge (VW) is a Siemens treatment modality which generates wedge-shaped dose distributions by moving a collimator jaw from closed to open at a constant speed while varying the dose rate in every 2 mm jaw position. In this work, the implementation and verification of VW in a radiotherapy treatment planning (RTP) system is presented. The VW implementation models the dose delivered by VW using the Siemens monitor units (MU) analytic formalism which determines the number of MU required to generate a wedge-fluence profile at points across the VW beam. For any set of treatment parameters, the VW algorithm generates an "intensity map" that is used to model the modification of fluence emanating from the collimator. The intensity map is calculated as the ratio of MU delivered on an axis point, divided by the monitor units delivered on the central-axis MU(0). The dose calculation is then performed using either the Clarkson or Convolution/ Superposition algorithms. The VW implementation also models the operational constraints for the delivery of VW due to dose rate and jaw speed limits. Dose verifications with measured profiles were performed using both the Clarkson and Convolution/Superposition algorithms for three photon beams; Siemens Primus 6 and 23 MV, and Mevatron MD 15 MV. Agreement within 2% or 2 mm was found between calculated and measured doses, over a large set of test cases, for 15, 30, 45, and 60 degree symmetric and asymmetric VW fields, using the manufacturer's supplied mu and c values for each beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call