Abstract

To implement and evaluate a novel single-volume two-dimensional localized constant-time-based correlated spectroscopy (2D LCT-COSY) sequence on a clinical 3T MR scanner. This sequence exhibits homonuclear decoupling along the F1 dimension, leading to improved spectral resolution compared to that of non-constant-time localized correlated spectroscopy (L-COSY). A GE 3T MR scanner equipped with a quadrature transmit and receive extremity coil was used in this study. The 2D LCT-COSY sequence was programmed using General Electric's EPIC compiler. Simulations for a two-spin 1/2 system were performed using GAMMA libraries to evaluate the theoretical performance of the sequences, and were also compared with corresponding phantom experiments using trans-cinnamic acid. Finally, spectra were acquired from the soleus muscle of healthy volunteers in order to evaluate performance in vivo. Simulations and experimental results confirmed the improved spectral resolution of LCT-COSY over L-COSY, as well as its homonuclear decoupling performance. The behavior of resonance amplitudes as a function of evolution time in the experiment also was appropriately reflected by the simulation. Corresponding results were obtained for the in vivo muscle spectra, in which separation of overlapping olefinic and allylic methylene protons from the intra- and extramyocellular lipids (IMCL and EMCL, respectively) was achieved. Simulations and experimental results in vitro and in vivo demonstrate the strengths of LCT-COSY. This technique can be implemented on systems of any field strength, and has the potential to separate overlapping metabolites in tissue when employed on high-field clinical MRI scanners equipped for proton spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call