Abstract

Recent years have witnessed impressive advances in technology which led to the rapid growth of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) using numerous low-powered devices with a huge number of actuators and sensors. These devices gather and exchange data over the internet and generate enormous amounts of data needed to be secured. Although traditional cryptography provides an efficient means of addressing device and communication confidentiality, integrity, and authenticity issues, it may not be appropriate for very resource-constrained systems, particularly for end-nodes such as a simply connected sensor. Thus, there is an ascent need to use lightweight cryptography (LWC) providing the needed level of security with less complexity, area and energy overhead. In this paper, four lightweight cryptographic algorithms called PRESENT, LED, Piccolo, and SPARX were implemented over a Contiki-based IoT operating system, dedicated for IoT platforms, and assessed regarding RAM and ROM usage, power and energy consumption, and CPU cycles number. The Cooja network simulator is used in this study to determine the best lightweight algorithms to use in IoT applications utilizing wireless sensor networks technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.