Abstract

An impedance-based electrochemical immunosensor for direct and binder-free target recognition of carbohydrate antigen (CA 19-9) tumor biomarker for the early diagnosis of pancreatic cancer was reported. This study uses an in situ solvothermal process to develop a simple method for the one-pot construction of Ni-Fe heteroMOFs (HFNMOFs,) self-supported on conductive nickel foam (NicFm). Utilizing HFNMOFs@NicFm developed in this study, the electrochemical performance of the biosensor was studied for the first time. The as-prepared mixed MOFs decorated NicFm electrodes displayed potential electrochemical outputs. They demonstrated the potential for developing binder-free non-enzymatic immunosensors with wide linear limits, high selectivity, stability, and excellent sensitivity. The bifunctional MOFs exhibit improved electrochemical conductivity owing to the highly exposed metal sites and hierarchical porosity. The changes in the charge transfer resistance present a linear response against increasing target concentrations. The immunosensor developed in this study exhibited its detection limit of 2.56 U/mL. Further, the bioelectrodes produced were validated against real human spiked serum with good results of percentage recovery, indicating the immunosensor is well-suitable to be tested in real-time analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.