Abstract

This paper reports on the analysis of dispersion in the imaginary part of impedance often observed at low frequencies in a variety of systems. The experimental data were obtained with an electrolytic cell containing KCl aqueous solution in the frequency range from 0.1 mHz to 10 MHz, where the use of ultra-low frequencies helps clarify the analysis of the imaginary impedance dispersion. It is shown that the low frequency dispersion described in the literature is the tail of a relaxation peak located at f ≅ 20 mHz. This ultra-low frequency dispersion peak is analyzed with a Cole-Cole impedance element, being associated with the electric double layer at the metal-electrolyte interface. Quantitative information can be extracted for the double layer, including its thickness (∼1 nm) and electrical resistivity (∼50 GΩm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.