Abstract
Crack cocaine is a highly toxic drug with great potential to induce addiction. It produces more intense effects than cocaine powder, with its use having grown worldwide. However, few studies have focused on the cognitive and biochemical consequences that result from crack cocaine inhalation. This study examined the effects of direct crack cocaine inhalation on spatial working memory and brain oxidative stress parameters in rats. Male adult Wistar rats, well-trained in an eight-arm radial maze (8-RM), underwent five sessions of crack cocaine inhalation (crack cocaine group) once a day or inhalation simulation (sham group), being tested in 1-h delayed tasks 24 h after the last inhalation. An additional inhalation session was carried out the following day, with the prefrontal cortex, hippocampus and striatum being removed five minutes afterwards in order to assess oxidative damage such as lipid peroxidation, thiobarbituric acid-reactive species (TBARS) levels, and advanced oxidation protein products (AOPP), as well as the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Animals from the crack cocaine group showed more errors (p < 0.01) in the 1-h post-delay performance in the 8-RM when compared to the sham group. The crack cocaine group showed decreased (p < 0.05) lipid peroxidation in the hippocampus and increased (p < 0.001) levels of AOPP and SOD activity (p < 0.05) in the striatum when compared to the sham group. Therefore, the repeated inhalation of crack cocaine impaired long-term spatial working memory and elicited oxidative stress in the hippocampus and striatum of rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have