Abstract
The effect of Brachyspira hyodysenteriae and Brachyspira hampsonii spirochetosis on Na+ transport was assessed in the colon to determine its contribution to diarrheal disease in pigs following experimental infection. Electrogenic and electroneutral Na+ absorption was assessed in Ussing chambers by radiolabeled 22Na flux and pharmacological inhibitory studies. Basal radiolabeled 22Na flux experiments revealed that mucosal-to-serosal flux (Jms) was significantly impaired in B. hyodysenteriae and B. hampsonii-diseased pigs. Inhibition of epithelial sodium channel via amiloride did not significantly reduce electrogenic short-circuit current (Isc) in the proximal, apex, and distal colonic segments of diseased pigs over control pigs, suggesting that a loss of electroneutral Na+ absorption is responsible for diarrheal development. These findings were further supported by significant downregulation of Na+/H+ exchanger (NHE1, NHE2, and NHE3) mRNA expression in the proximal, apex, and distal colonic segments paired with decreased protein expression of the critical NHE3 isoform. The decrease in NHE3 mRNA expression appears not to be attributed to the host's cytokine response as human IL-1α did not modify NHE3 mRNA expression in Caco-2 cells. However, a whole cell B. hampsonii lysate significantly downregulated NHE3 mRNA expression and significantly increased p38 phosphorylation in Caco-2 cells. Together these findings provide a likely mechanism for the spirochete-induced malabsorptive diarrhea, indicated by a decrease in electroneutral Na+ absorption in the porcine colon due to Brachyspira's ability to inhibit NHE3 transcription, resulting in diarrheal disease.NEW & NOTEWORTHY This research demonstrates that diarrheal disease caused by two infectious spirochete spp. is a result of impaired electroneutral Na+ absorption via Na+/H+ exchanger 3 (NHE3) in the porcine colon. Our findings suggest that the decrease in NHE3 mRNA and protein is not likely a result of the host's cytokine response. Rather, it appears that these two Brachyspira spp. directly inhibit the transcription and translation of NHE3, resulting in the development of diarrhea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.