Abstract
Xeroderma pigmentosum is a rare, autosomal recessive disease in which patients develop excessive solar damage at an early age and have a 1000-fold increased risk of developing cutaneous neoplasms. Xeroderma pigmentosum can be classified into seven complementation groups (A-G) with defects in different DNA nucleotide excision repair genes. Xeroderma pigmentosum patients also have impaired immune function including reduced natural killer cell activity and impaired induction of interferon-gamma. We hypothesized that altered cytokine induction may contribute to the immune defect in xeroderma pigmentosum patients. We examined cytokine mRNA expression after ultraviolet B irradiation using reverse transcriptase polymerase chain reaction in fibroblasts derived from five xeroderma pigmentosum patients in complementation groups A, C, and D and in complemented XP-A and XP-D cells. Cytokines interleukin-1beta and interleukin-6 displayed impaired ultraviolet B induction whereas interleukin-8 had normal induction in the xeroderma pigmentosum fibroblasts. Stable complementation of XP-A and XP-D cell lines increased ultraviolet-B-induced interleukin-1beta and interleukin-6 expression. These results demonstrate a deficient response of xeroderma pigmentosum fibroblasts to ultraviolet B in terms of cytokine interleukin-1beta and interleukin-6 induction but normal interleukin-8 induction and exhibit a role for DNA repair in cytokine induction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have