Abstract
The impact of diabetes mellitus on bone fracture healing is clinically relevant as the patients experience delayed fracture healing. Even though efforts have been made to understand the detrimental effects of type 2 diabetes mellitus (T2DM) on the fracture healing process, the exact mechanisms causing the pathophysiological outcomes remain unclear. The aim of this study was to assess alterations in bone fracture healing (tibial fracture surgery, intramedullary pinning) of diet-induced obese (DIO) mice, and to investigate the in vitro properties of osteochondroprogenitors derived from the diabetic micro-environment. High-resolution contrast-enhanced microfocus X-ray computed tomography (CE-CT) enabled a simultaneous 3D assessment of the amount and spatial distribution of the regenerated soft and hard tissues during fracture healing and revealed that osteogenesis as well as chondrogenesis are altered in DIO mice. Compared to age-matched lean controls, DIO mice presented a decreased bone volume fraction and increased callus volume and adiposity at day 14 post-fracture. Of note, bone turnover was found altered in DIO mice relative to controls, evidenced by decreased blood serum osteocalcin and increased serum CTX levels. The in vitro data revealed that not only the osteogenic and adipogenic differentiation of periosteum-derived cells (PDCs) were altered by hyperglycemic (HG) conditions, but also the chondrogenic differentiation. Elevated PPARγ expression in HG conditions confirmed the observed increase in differentiated adipocytes in vitro. Finally, chondrogenesis-related genes COL2 and COL10 were downregulated for PDCs treated with HG medium, confirming that chondrogenic differentiation is compromised in vitro and suggesting that this may affect callus formation and maturation during the fracture healing process in vivo. Altogether, these results provide novel insights into the alterations of long bone fracture repair and suggest a link between HG-induced dysfunctionality of osteochondroprogenitor differentiation and fracture healing impairment under T2DM conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.