Abstract
Both therapies for Graves' disease (GD), radioactive iodine (RAI) and antithyroid drugs (ATD), were reported to have specific immune effects. We aimed at investigating the effects of RAI therapy on cellular subsets involved in immune regulation. We conducted a thirty day follow-up prospective cohort study of adult patients. Patients eligible for RAI therapy at our centre were approached. Twenty seven patients with GD were recruited, among whom 11 were treated with ATD. Twenty-two healthy subjects (HS) were also studied. Over time, frequency of regulatory T cells (Treg) and of invariant natural killer T cells (iNKT), along with Treg cell-mediated suppression and underlying mechanisms, were monitored in the peripheral blood. Variance in frequency of Treg and iNKT after RAI therapy was higher in GD patients than in HS over time (p<0.0001). Reduced Treg suppressive function was observed after RAI therapy in GD patients (p=0.002). ATD medication prior to RAI dampened these outcomes: less variation of Treg frequency (p=0.0394), a trend toward less impaired Treg function, and prevention of reduced levels of suppressive cytokines (p<0.05). Shortly after RAI therapy, alterations in immunoregulatory cells in patients with GD were observed and partially prevented by an ATD pretreatment. Worsening of autoimmunity after RAI was explained in previous studies by enhanced immune activity. This study adds new highlights on immune regulation deficiencies after therapeutic interventions in thyroid autoimmunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.