Abstract
Chronic ethanol consumption reduces alanine transport by rat basolateral liver plasma membrane (blLPM) vesicles; however, the mechanism for this effect remains uncertain. It may be related to the ethanol-induced changes in blLPM fluidity and lipid composition; alternatively ethanol might reduce the number of transporters in the blLPM. To investigate the effect of blLPM fluidity and lipid composition on Na(+)-dependent alanine uptake these parameters were altered in vitro. Increasing the blLPM fluidity had no effect on Na(+)-dependent alanine uptake by blLPM vesicles or the activity of amino acid transport systems, A and ASC. Because ethanol is known to reduce the blLPM cholesterol content, the influence of altering blLPM cholesterol on alanine transport by these membranes was investigated next. Neither an increase nor a decrease of the cholesterol content of the blLPM altered Na(+)-dependent alanine uptake or the activity of system A or ASC. Finally, the influence of chronic ethanol consumption on the specific binding of [3H]alanine to blLPM was studied. The dissociation constant for alanine binding to blLPM from ethanol-fed rats and their pair-fed controls was similar (1.9 +/- 0.2 vs. 2.0 +/- 0.3 mM); however, the maximal binding capacity for alanine was significantly (P less than 0.05) lower in the blLPM from ethanol-fed rats (316 +/- 53 pmol/mg protein) compared with their pair-fed controls (527 +/- 79 pmol/mg protein). These studies do not support the hypothesis that ethanol-induced changes in blLPM fluidity are responsible for the impaired alanine transport; they do suggest that ethanol may reduce the
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have