Abstract

AbstractCloud-resolving ensemble simulations and sensitivity experiments utilizing the Weather Research and Forecasting model (WRF) are performed to investigate the dynamics and predictability of the record-breaking rainfall and flooding event in Taiwan induced by Typhoon Morakot (2009). It is found that a good rainfall forecast foremost requires a good track forecast during Morakot’s landfall. Given a good track forecast, interaction of the typhoon circulation with complex topography in southern Taiwan plays a dominant role in producing the observed heavy rainfalls. The terrain slope, strength of the horizontal winds, and mid–lower-tropospheric moisture content in the southwesterly upslope flow are the primary factors that determine the rainfall location and intensity, as elucidated by the idealized one-dimensional precipitation-rate forecast model. The typhoon circulation and the southwesterly monsoon flow transport abundant moisture into southern Taiwan, which produces the heavy rainfall through interactions with the complex high terrain in the area. In the meantime, as part of the south China monsoon, the southwesterly flow may be substantially enhanced by the typhoon circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.