Abstract
The non-hydrostatic global variable resolution model (MPAS-atmosphere) is used to conduct the simulations for the South Asian Summer monsoon season (June, July, and August) in 2015 with a refinement over the Tibetan Plateau (TP) at the convection-permitting scale (4 km). Two experiments with different topographical datasets, complex (4-km) and smooth (60-km) topography, are designed to investigate the impacts of topographical complexity on moisture transport and precipitation. Compared with the observations and reanalysis data, the simulation can successfully capture the general features of key meteorological fields over the TP despite slightly underestimating the inflow through the southern TP. The results indicate that the complex topography can decrease the inward and outward moisture transport, ultimately increasing the total net moisture transport into the TP by ∼11%. The impacts of complex topography on precipitation are negligible over the TP, but the spatial distributions of precipitation over the Himalayas are significantly modulated. With the inclusion of complex topography, the sharper southern slopes of the Himalayas shift the lifted airflow and hence precipitation northward compared to the smooth topography. In addition, more small-scale valleys are resolved by the inclusion of complex topography, which serve as channels for moisture transport across the Himalayas, further favoring a northward shift of precipitation. Overall, the difference between the two experiments with different topography datasets is mainly attributed to their differing representation of the degree of the southern slopes of the Himalayas and the extent to which the valleys are resolved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.