Abstract

Abstract. Most previous modeling studies about black carbon (BC) transport and its impact over the Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 20 km that may not be able to resolve the complex topography of the Himalayas well. In this study, the two experiments covering all of the Himalayas with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two different topography datasets (4 km complex topography and 20 km smooth topography) are conducted for pre-monsoon season (April 2016) to investigate the impacts of topography on modeling the transport and distribution of BC over the TP. Both experiments show the evident accumulation of aerosols near the southern Himalayas during the pre-monsoon season, consistent with the satellite retrievals. The observed episode of high surface BC concentration at the station near Mt. Everest due to heavy biomass burning near the southern Himalayas is well captured by the simulations. The simulations indicate that the prevailing upflow across the Himalayas driven by the large-scale westerly and small-scale southerly circulations during the daytime is the dominant transport mechanism of southern Asian BC into the TP, and it is much stronger than that during the nighttime. The simulation with the 4 km topography resolves more valleys and mountain ridges and shows that the BC transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is more efficient. The complex topography results in stronger overall cross-Himalayan transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. This results in 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the TP from the simulation with the 4 km complex topography than that with the 20 km smoother topography. The different topography also leads to different distributions of snow cover and BC forcing in snow. This study implies that the relatively smooth topography used by the models with resolutions coarser than 20 km may introduce significant negative biases in estimating light-absorbing aerosol radiative forcing over the TP during the pre-monsoon season. Highlights. The black carbon (BC) transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is much more efficient during the pre-monsoon season. The complex topography results in stronger overall cross-Himalayan transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. The complex topography generates 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan Plateau (TP) than the smoother topography, which implies that the smooth topography used by the models with relatively coarse resolution may introduce significant negative biases in estimating BC radiative forcing over the TP during the pre-monsoon season. The different topography also leads to different distributions of snow cover and BC forcing in snow over the TP.

Highlights

  • The high black carbon (BC) mass loading exists near the southern Himalayas reaching over 10 mg m−2, which is largely contributed by the biomass burning emissions during the period (Fig. 4), while the value reduces significantly to less than 0.4 mg m−2 over the Tibetan Plateau (TP)

  • The model experiments with different topographies are conducted to illustrate the impacts of the complexity of the topography of the Himalayas on BC transport from southern Asia to the TP

  • The observed surface BC concentration shows a peak of ∼ 3 μg m−3, which is much larger than the background value of < 0.4 μg m−3 over the TP

Read more

Summary

Introduction

The Tibetan Plateau (TP) is the highest plateau in the world with an average elevation over 4 km and an area of approximately 2.5 × 106 km; it is known as the world’s third pole (Qiu, 2008), and its enormous dynamic and thermal effects have a huge impact on large-scale atmospheric circulation through the energy exchange with the atmosphere, especially the troposphere, such as Asian monsoons (e.g., Ye and Wu, 1998; Duan and Wu, 2005; Wu et al, 2007, 2012a; Boos and Kuang, 2013; Chen and Bordoni, 2014; He et al, 2019; Zhao et al, 2019). Previous studies found aerosols in the atmosphere over or around the TP could change the regional climate of Asia (e.g., Qian et al, 2011, 2015; Lau et al, 2017; Lau and Kim, 2018). According to the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), the radiative forcing caused by the important component of absorbing aerosols and black carbon (BC) on the surface snow is 0.04 W m−2 (0.02–0.09 W m−2) on average globally, and the regional forcing (such as over the Arctic and the Himalayas) can be considerably large

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call