Abstract
The global food system is a key driver of land-use and climate change which in turn drive biodiversity change. Developing sustainable food systems is therefore critical to reversing biodiversity loss. We use the multi-regional input-output model EXIOBASE to estimate the biodiversity impacts embedded within the global food system in 2011. Using models that capture regional variation in the sensitivity of biodiversity both to land use and climate change, we calculate the land-driven and greenhouse gas-driven footprints of food using two metrics of biodiversity: local species richness and rarity-weighted species richness. We show that the footprint of land area underestimates biodiversity impact in more species-rich regions and that our metric of rarity-weighted richness places a greater emphasis on biodiversity costs in Central and South America. We find that methane emissions are responsible for 70% of the overall greenhouse gas-driven biodiversity footprint and that, in several regions, emissions from a single year’s food production are associated with global biodiversity loss equivalent to 2% or more of that region’s total land-driven biodiversity loss. The measures we present are relatively simple to calculate and could be incorporated into decision-making and environmental impact assessments by governments and businesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.