Abstract
Extratropical cyclones are responsible for many of the high-impact weather events over the United States, including extreme cold, extreme high wind, and extreme heavy precipitation. In this study, impacts from the variations of the cyclone (or storm-track) activity on these extreme events are examined through composites based on map-averaged cyclone activity. Increased cyclone activity enhances the frequency of extreme cold and high wind events over much of the United States, and impacts extreme precipitation around the Ohio River valley. These impacts are largely due to a changing of the tail of the distribution rather than a shifting of the mean. To systematically study these impacts, three singular value decomposition (SVD) analyses have been conducted, each one between the cyclone activity and one kind of extreme event frequency. All three SVD leading modes represent a pattern of overall increase or decrease of storm tracks over the United States. The average of the time series of these leading modes is highly correlated with the observed map-averaged storm track and strongly associated with the Pacific–North America (PNA) pattern and El Niño–Southern Oscillation (ENSO). However, composites based on either the PNA pattern or ENSO do not show as strong impacts as the map-averaged storm track. A second common SVD mode is found that correlates weakly with the North Pacific mode and is likely to be largely due to internal variability. Finally, the potential impacts of projected storm-track change on the frequency of extreme events are examined, indicating that the projected storm-track decrease over North America may give rise to some reduction in the frequency of extreme events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.