Abstract

Erosion by water reduces soil quality and hence crop yield. Understanding the response of crop yields to soil erosion is vital in assessing agriculture’s vulnerability to erosion. However, these effects are difficult to quantify. The study presents a quantitative relationship between soil erosion and soil quality and productivity of rainfed wheat (Triticum aestivum) by comparing field plots with different degrees of erosion in some sub-tropical alfisols in the Doon Valley region of India. By comparing the topsoil depth with the reference site as the control, erosion severity was classified into different phases such as slight, moderate, severe, and very severe. A quantitative, weighted additive model was used to evaluate soil quality for different phases of erosion using soil clay content, water holding capacity, soil aggregate, soil organic carbon, pH, CEC, total N, available P, and available K. The synthesis of long-term experimental data revealed that the mean soil erosion rate varied from 5.5 Mg ha−1 yr−1 in slightly eroded plots to 33.4 Mg ha−1 yr−1 in very severely eroded plots. Compared with the reference forest, the soil organic carbon (SOC) declined by 81.4% and water holding capacity by 31% in severely eroded soils. A substantial loss of total N, extractable P, and available K was also observed. Water stable aggregates (WSA) decreased from 86% to 12.6%, and the cation exchange capacity (CEC) from 25 to 12.6 c mol(+) kg−1. The soil quality index was 0.7 in slightly eroded compared with 0.4 in severely eroded soil. Similarly, the sustainable yield index for wheat was 0.9 and 0.6 for slightly and severely eroded soils, respectively. Thus, there is a strong need to identify land management systems that reduce erosion risks, restore eroded soils, and enhance soil quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call