Abstract
Predation can alter diverse ecological processes, including host-parasite interactions. Selective predation, whereby predators preferentially feed on certain prey types, can affect prey density and selective pressures. Studies on selective predation in infected populations have primarily focused on predators preferentially feeding on infected prey. However, there is substantial evidence that some predators preferentially consume uninfected individuals. Such different strategies of prey selectivity likely modulate host-parasite interactions, changing the fitness payoffs both for hosts and their parasites. Here we investigated the effects of different types of selective predation on infection dynamics and host evolution. We used a host-parasite system in the laboratory (Daphnia dentifera infected with the horizontally transmitted fungus, Metschnikowia bicuspidata) to artificially manipulate selective predation by removing infected, uninfected, or randomly selected prey over approximately 8-9 overlapping generations. We collected weekly data on population demographics and host infection and measured susceptibility from a subset of the remaining hosts in each population at the end of the experiment. After 6 weeks of selective predation pressure, we found no differences in host abundance or infection prevalence across predation treatments. Counterintuitively, populations with selective predation on infected individuals had a higher abundance of infected individuals than populations where either uninfected or randomly selected individuals were removed. Additionally, populations with selective predation for uninfected individuals had a higher proportion of individuals infected after a standardized exposure to the parasite than individuals from the two other predation treatments. These results suggest that selective predation can alter the abundance of infected hosts and host evolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have