Abstract

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-COV-2), the causative agent of the coronavirus disease 19 (COVID-19), is a highly transmittable virus. Since the first person-to-person transmission of SARS-CoV-2 was reported in Italy on February 21st, 2020, the number of people infected with SARS-COV-2 increased rapidly, mainly in northern Italian regions, including Piedmont. A strict lockdown was imposed on March 21st until May 4th when a gradual relaxation of the restrictions started. In this context, computational models and computer simulations are one of the available research tools that epidemiologists can exploit to understand the spread of the diseases and to evaluate social measures to counteract, mitigate or delay the spread of the epidemic.MethodsThis study presents an extended version of the Susceptible-Exposed-Infected-Removed-Susceptible (SEIRS) model accounting for population age structure. The infectious population is divided into three sub-groups: (i) undetected infected individuals, (ii) quarantined infected individuals and (iii) hospitalized infected individuals. Moreover, the strength of the government restriction measures and the related population response to these are explicitly represented in the model.ResultsThe proposed model allows us to investigate different scenarios of the COVID-19 spread in Piedmont and the implementation of different infection-control measures and testing approaches. The results show that the implemented control measures have proven effective in containing the epidemic, mitigating the potential dangerous impact of a large proportion of undetected cases. We also forecast the optimal combination of individual-level measures and community surveillance to contain the new wave of COVID-19 spread after the re-opening work and social activities.ConclusionsOur model is an effective tool useful to investigate different scenarios and to inform policy makers about the potential impact of different control strategies. This will be crucial in the upcoming months, when very critical decisions about easing control measures will need to be taken.

Highlights

  • Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), the causative agent of the coronavirus disease 19 (COVID-19), is a highly transmittable virus

  • Italy was the first European country affected by the coronavirus 2 (SARS-CoV-2) outbreak, with the first autochthonous case identified in Lombardy on February, 21st, 2020 [1]

  • We studied how the COVID-19 spread in Piedmont could be kept under control by the implementation of the infectioncontrol measures based on the use of individual-level measures, and on the intensification of the surveillance methods including contact tracing, the identification of undetected cases by swab testing, and early isolation of infected individuals

Read more

Summary

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), the causative agent of the coronavirus disease 19 (COVID-19), is a highly transmittable virus. Since the first person-to-person transmission of SARS-CoV-2 was reported in Italy on February 21st, 2020, the number of people infected with SARS-COV-2 increased rapidly, mainly in northern Italian regions, including Piedmont. A strict lockdown was imposed on March 21st until May 4th when a gradual relaxation of the restrictions started. In this context, computational models and computer simulations are one of the available research tools that epidemiologists can exploit to understand the spread of the diseases and to evaluate social measures to counteract, mitigate or delay the spread of the epidemic. During the following weeks the number of people who tested positive for SARS-CoV-2 swab rapidly increased, exceeding 100,000 cases by the end of March 2020 [2, 3]. In the weeks following the third restriction, a slow but constant decrease of the infected cases was registered showing that the adopted control strategies had been effective in limiting the outbreak progression

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call