Abstract

Feed spacer is universally used in spiral-wound nanofiltration (NF) and reverse osmosis (RO) membrane modules. It can separate membrane sheets, create flow channels, promote turbulence and enhance mass transfer. However, it also induces increased pressure drop across the flow channel, and generates dead zones for biofilm growth at specific locations. Optimization of feed spacer geometries is highly desirable for energy saving and biofouling control. In this study, four kinds of commercial feed spacers featured with non-uniform filaments were compared in terms of hydraulic and anti-fouling performances. Computational fluid dynamics (CFD) simulations were launched to give insights into the impacts of feed spacer characteristics on the flow field. Results show that the hydraulic performance was substantially affected by the number of filament layers (single or dual layer), the non-uniformity of filament diameter and the width of thinning zones. The design of single layer feed spacer of non-uniform filaments was not recommended due to high flow resistance and poor anti-fouling performance. The feed spacer structure of alternating filament diameter contributed to reducing dead zones and alleviating membrane fouling. The thinning zones located adjacent to the filament junctions achieved better anti-fouling performance, as it disturbed the dead zones and partially washed away the deposited foulants. This study demonstrates for the first time that the characteristics of non-uniform filament feed spacer had a crucial impact on the hydraulic and anti-fouling performances, and suggests that more emphasis should be laid on number of filament layers, variation of filament diameter and width and positioning of thinning zones for the optimization of feed spacer geometries in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.