Abstract

Movable fluid content and permeability are important reference factors for reservoir quality evaluation and recovery enhancement. In this study, based on multiple experimental results, 10 typical samples from a tight sandstone gas reservoir in the coal measure strata of the Shanxi Formation along the southeastern margin of the Ordos Basin were divided into three lithofacies to discuss the factors influencing movable fluid content and permeability. The results show that the fluid has a strong seepage capacity and a high degree of mobility in relatively large pore throats. The relatively large pores in the study area are secondary dissolved pores of various origins. High quartz and feldspar contents are conducive to the formation of secondary pores, while the presence of carbonate minerals and clay minerals play an inhibitory role. The pore throat size range of 0.05–0.1 μm is the critical interval for the conversion of bound fluid to movable fluid. The movable fluid saturation and movable fluid porosity are affected by submicron- and micron-scale pore throats of >0.1 μm, while the permeability is controlled by micron-scale pore throats sizes of >1 μm. The volumetric proportion of the relatively large pore throats is influenced by the mineralogical composition of the rock, the size of the pore throats, and the degree of sorting, which further control the amount of moveable fluid and its percolation capacity. The highest movable fluid content and permeability appear in the massive gravel-bearing coarse to medium sandstone lithofacies (Lm) with a high proportion of submicron- and micron-scale pore throats, whereas the lowest occurs in parallel bedding or ripple laminations,medium to fine sandstone lithofacies (Lpr) with a high proportion of nano-scale pore throats. The lithofacies with cross bedding and medium sandstone (Lc) is also dominated by nano-scale pore throats, which shows the characteristics of low movable fluid content and medium permeability due to the retention of some micron-scale pore throats. This study describes the mobility of fluids with different pore throat sizes in detail and determines the pore throat size range corresponding to the transition from bound fluid to movable fluid, which can provide a reference for the evaluation of movable fluid seepage in other regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call