Abstract
Metal-organic frameworks (MOFs), a class of hybrid organic-inorganic materials, have recently attracted tremendous interests in the fabrication of thin-film nanocomposite (TFN) membranes with exceptional permselectivity. However, the structure-performance relationship of such membranes, which is a function of both MOF type and membrane fabrication procedure, has not been elucidated in the literature. In this study, three types of hydro-stable MOFs, namely, MIL-53(Al), NH2-UiO-66, and ZIF-8, were used to fabricate TFN nanofiltration membranes via both blending (BL) and preloading interfacial polymerization methods. Results show that the incorporation of MOFs could enhance water permeability of TFN membranes to 7.2 L/(m2·h·bar) at most ( TFNNH2-UiO-66-BL-0.10%), about 1.3 times of the corresponding thin-film composite membranes, without sacrificing their selectivity to reject NaCl (>40%) and xylose (>65%). Membrane characterization revealed that MOFs decreased the cross-linking degree while increasing the membrane thickness, surface negative charge, and roughness of the polyamide active layer. MIL-53(Al) were found to bind with polyamide via reacting with piperazine, whereas weaker polyamide-MOF interactions were observed for NH2-UiO-66 and ZIF-8. This difference, along with the hydrophilicity of MOF particles, explained the varied permselectivity of different TFN membranes. Compared to pristine polyamide membranes, the TFN membranes demonstrated higher or comparable efficiencies in removing a set of six pharmaceuticals (PhACs), which were determined by the molecular properties of PhACs and membrane structure. The findings of this study deepen our understanding of the roles that MOFs play in regulating membrane performance, promoting molecular design of MOF-incorporated TFN membranes via precise control of MOF-polymer interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.