Abstract

Ground faults are among the major causes of disrupting the safe, secure, stable, and profitable operation of doubly fed induction generator (DFIG) based wind energy conversion systems (WECSs). On one hand, minimizing the possible damage in a DFIG-based WESC, caused by ground faults, requires accurate detection and fast response of ground protective devices. On the other hand, the responses of ground protective devices are highly dependent on ground currents and potentials, especially during high-impedance ground faults. This paper investigates the influences of grounding configurations on the responses of ground protective devices used in DFIG-based WECSs during high-impedance ground faults. Investigated influences are observed through the ability of ground protective devices, used in DFIG-based WECSs, to quickly and accurately respond to high-impedance ground faults for different grounding configurations. In this paper, the solid, low-resistance, high-resistance, and open grounding configurations are tested for DFIG-based WECS in order to establish comprehensive investigations. The results of the investigations show that the responses of ground protective devices vary depending on ground fault currents, which can have different levels due to the grounding configuration. Moreover, the results of the investigations reveal that the frequency-selective grounding configuration can offer a minimum impact on the responses of ground protective devices used in DFIG-based WECSs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call