Abstract
Wave climate and Pacific basin coastal behaviour associated with El Niño Southern Oscillation (ENSO) is understood at a reconnaissance level, but the coastal response to different central Pacific (CP) versus eastern Pacific (EP) flavours of ENSO is unknown. We show that CP ENSO events produce different patterns of directional wave power to EP ENSO along the southeast Australian shelf and southwest Pacific region, because of significant variability in trade-wind wave generation. The modulation of the trade wind wave climate during CP ENSO has thus far been neglected in existing coastal process studies. We also show that coastal change between CP and EP ENSO cannot be inferred from shifts in the deepwater wave climate. This is because variability in trade wind wave generation is masked in deepwater by the persistence of high power extra-tropical waves that have reduced impact on nearshore processes due to high wave refraction. Morphodynamic modelling in a headland-bay beach indicates that CP ENSO leads to higher coastal erosion potential and slower post-storm recovery than EP ENSO during an El Niño/La Niña cycle. We show that the alongshore variability in beach morphological type can be used to model the static equilibrium planform response for each ENSO phase. Results indicate that shoreline response to ENSO in most headland-bay beach coasts is not as simple as the existing paradigm that (anti-) clockwise rotation occurs during El Niño (La Niña). Our methods provide a second-order approach to project coastal response and predict the discrete shoreline rotations for ENSO flavours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.