Abstract

A high penetration of electric vehicle (EV) charging in low voltage (LV) networks can challenge grid stability due to voltage variations and limited feeder capacity. This research paper examines the integration of electric vehicle (EV) charging in real-life residential low voltage (LV) networks in Malta. The study utilizes smart metering data and presents a methodology framework and tools to analyze the impacts of EV charging on grid stability. The likelihood of challenges in the LV network is assessed by conducting simulations and deriving cumulative distribution functions (CDFs). The study also evaluates the impact of EV charging on the occurrence of network challenges and identifies predominant issues through multi-feeder analyses. Additionally, a regression analysis tool is developed to predict the impacts based on feeder characteristics. The results show strong relationships between feeder characteristics and EV charging processes, offering valuable insights for network planning and operations. However, it should be noted that the current EV charging penetration in the Maltese grid is below 1% in any LV feeder, suggesting the absence of significant technological hurdles at present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call