Abstract

Drought stress is one of the most critical threats to crop productivity and global food security. This review addresses the multiple effects of drought on the process of photosynthesis in major food crops. Affecting both light-dependent and light-independent reactions, drought leads to severe damage to photosystems and blocks the electron transport chain. Plants face a CO2 shortage provoked by stomatal closure, which triggers photorespiration; not only does it reduce carbon fixation efficiency, but it also causes lower overall photosynthetic output. Drought-induced oxidative stress generates reactive oxygen species (ROS) that damage cellular structures, including chloroplasts, further impairing photosynthetic productivity. Plants have evolved a variety of adaptive strategies to alleviate these effects. Non-photochemical quenching (NPQ) mechanisms help dissipate excess light energy as heat, protecting the photosynthetic apparatus under drought conditions. Alternative electron pathways, such as cyclical electron transmission and chloroplast respiration, maintain energy balance and prevent over-reduction of the electron transport chain. Hormones, especially abscisic acid (ABA), ethylene, and cytokinin, modulate stomatal conductance, chlorophyll content, and osmotic adjustment, further increasing the tolerance to drought. Structural adjustments, such as leaf reordering and altered root architecture, also strengthen tolerance. Understanding these complex interactions and adaptive strategies is essential for developing drought-resistant crop varieties and ensuring agricultural sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.