Abstract

Angler effort is an important factor affecting recreational fisheries. However, angler responses are rarely incorporated into recreational fisheries regulations or predictions. Few have attempted to examine how daily bag limit regulations affect total angling pressure and subsequent stock densities. Our paper develops a theoretical basis for predicting angler effort and harvest rate based on stock densities and bag limit regulations. We examined data from a management system that controls the total exploitation of walleyes Sander vitreus (formerly Stizostedion vitreum) in northern Wisconsin lakes and compared these empirical results with the predictions from a theoretical effort and harvest rate response model. The data indicated that higher general angler effort occurs on lakes regulated with a 5-walleye daily limit than on lakes regulated with either a 2- or 3-walleye daily limit. General walleye catch rates were lower on lakes with a 5-walleye limit than on lakes with either a 2- or 3-walleye daily limit. An effort response model predicted a logarithmic relationship between angler effort and adult walleye density and that an index of attractiveness would be greater on lakes with high bag limits. Predictions from the harvest rate model with constant walleye catchability indicated that harvest rates increased nonlinearly with increasing density. When the effort model was fitted to data from northern Wisconsin, we found higher lake attractiveness at 5-walleye-limit lakes. We conclude that different groups of anglers respond differently to bag limit changes and that reliance on daily bag limits may not be sufficient to maintain high walleye densities in some lakes in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call