Abstract

Abstract Low-level warm-phase clouds cover a substantial portion of Earth’s oceans and play an important role in the global water and energy budgets. The characteristics of these clouds are controlled by the large-scale environment, boundary layer conditions, and cloud microphysics. Variability in the concentration of aerosols can alter cloud microphysical and precipitation processes that subsequently impact the system dynamics and thermodynamics and thereby create aerosol–cloud dynamic–thermodynamic feedback effects. In this study, three distinct cloud regimes were simulated, including stratocumulus, low-level cumulus (cumulus under stratocumulus), and deeper cumulus clouds. The simulations were conducted without environmental large-scale forcing, thereby allowing all three cloud types to freely interact with the environmental state in an undamped fashion. Increases in aerosol concentration in these unforced, warm-phase, tropical cloud simulations lead to the production of fewer low-level cumuli; thinning and erosion of the widespread stratocumulus layer; and the development of deeper, inversion-penetrating cumuli. The mechanisms for these changes are explored. Despite the development of deeper, more heavily precipitating cumuli, the reduction of the widespread moderately precipitating stratocumulus clouds leads to an overall reduction in domainwide accumulated precipitation when aerosol concentrations are enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.