Abstract

This study investigates the impacts of climate change on yield of selected cereal crops (wheat and maize) in the northern climatic region of Khyber Pakhtunkhwa (KP) province of Pakistan for the period 1986-2015. The first-generation unit root tests such as the Levin, Lin, and Chu (LLC), augmented Dickey-Fuller (ADF)-Fisher, and the second-generation unit root tests such as cross-sectional augmented Im-Pesaran-Shin (CIPS) and cross-sectional ADF (CADF) are used to check stationarity of the series. The cointegration among the variables is discovered via Pedroni test and Westerlund method. The long- and short-run impacts of climatic variables (average precipitation, maximum temperature, and minimum temperature) on yield of wheat and maize crops are assessed through the autoregressive distributed lag (ARDL) model. The empirical findings reveal that average precipitation has a significantly positive impact on yield of both crops in long- as well as short-run. The results further reveal that the effect of average minimum temperature on both crops is insignificant in long-run. However, the short-run effect of average minimum temperature is significantly positive on yield of maize crop but insignificant on yield of wheat crop. In long-run, an increase in average maximum temperature negatively affects crop yield. In short-run, however, it positively affects the yield of wheat and maize crops. The study recommends that increase in area under cultivation, development of advanced irrigation system, and farmers' access to metrological information will help in lowering the drastic impacts of climate change on crop productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call