Abstract

This study depicts potential climate change impacts on annual rainwater savings from household rainwater harvesting using two different climate projection models; ACCESS 1.0 and CSIRO-Mk3.6. This paper also investigates potential changes in the relationships of ‘water saving efficiency’ and reliability with rainfall ‘seasonality index’ under the mentioned climate change scenarios. The annual water savings were calculated for three weather conditions: dry, average, and wet. Historical daily rainfall amounts provided by the Australian Bureau of Meteorology were used for three locations within the city of Brisbane (Australia). For the same locations, projected future daily rainfall amounts were collected from an online data portal facilitated by the Australian government. Potential annual water savings, water saving efficiency, and reliability values for the selected locations were calculated through a widely used tool, eTank, developed on water balance methodology at a daily scale. It was found that for the coastal location, Manly, the future water savings are not likely to change significantly. However, for the inland location, Sunnybank, the future water savings are expected to decrease under all the weather conditions through both the considered climate projections. For the far inner location, Oxley, the water savings are likely to decrease in the dry year, whereas in wet year, they are likely to increase. Also, it was found that the overall average relationship of SI–water saving efficiency is steeper for ACCESS 1.0 projected data compared to that produced through CSIRO-Mk3.6 data, and that significant differences exist among individual relationships for each location. The overall reliabilities calculated through the model projected data show lower values compared to the reliabilities calculated using historical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.