Abstract

Abstract On 24 May 2011, a tornadic supercell (the El Reno, Oklahoma, storm) produced tornadoes rated as category 3 and 5 events on the enhanced Fujita scale (EF3 and EF5, respectively) during a severe weather outbreak. The transition (“handoff”) between the two tornadoes occurred as the El Reno storm merged with a weaker, ancillary storm. To examine the impacts of the merger on the dynamics of these storms, a series of three-dimensional cloud-scale analyses are created by assimilating 1-min volumetric observations from the National Weather Radar Testbed’s phased array radar into a numerical cloud model using the local ensemble transform Kalman filter technique. The El Reno storm, its updrafts, and vortices in the analyzed fields are objectively identified, and the changes in these objects before, during, and after the merger are examined. It is found that the merger did not cause the tornado handoff, which preceded the updraft merger by about 5 min. Instead, the handoff likely resulted from midlevel mesocyclone occlusion, in which the midlevel mesocyclone split and a portion is shed rearward with respect to storm motion. During the merger process, the midlevel mesocyclone and updraft structure in the El Reno storm became relatively disorganized. New updraft pulses that formed above colliding outflow boundaries between the two storms tilted environmental vorticity from low levels to generate an additional midlevel vortex that later merged with the El Reno storm’s midlevel mesocyclone. Once the ~10-min merger process was complete, the El Reno storm and its mesocyclone rapidly reintensified, as access to buoyant inflow sector air was restored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call