Abstract

BackgroundWe present a descriptive and retrospective analysis of revision total hip arthroplasties (THA) using the MRP-TITAN stem (Peter Brehm, Weisendorf, GER) with distal diaphyseal fixation and metaphyseal defect augmentation. Our hypothesis was that the metaphyseal defect augmentation (Impaction Bone Grafting) improves the stem survival.MethodsWe retrospectively analyzed the aggregated and anonymized data of 243 femoral stem revisions. 68 patients with 70 implants (28.8%) received an allograft augmentation for metaphyseal defects; 165 patients with 173 implants (71.2%) did not, and served as controls. The mean follow-up was 4.4 ± 1.8 years (range, 2.1–9.6 years). There were no significant differences (p > 0.05) between the study and control group regarding age, body mass index (BMI), femoral defects (types I-III as described by Paprosky), and preoperative Harris Hip Score (HHS). Postoperative clinical function was evaluated using the HHS. Postoperative radiologic examination evaluated implant stability, axial implant migration, signs of implant loosening, periprosthetic radiolucencies, as well as bone regeneration and resorption.ResultsThere were comparable rates of intraoperative and postoperative complications in the study and control groups (p > 0.05). Clinical function, expressed as the increase in the postoperative HHS over the preoperative score, showed significantly greater improvement in the group with Impaction Bone Grafting (35.6 ± 14.3 vs. 30.8 ± 15.8; p ≤ 0.05). The study group showed better outcome especially for larger defects (types II C and III as described by Paprosky) and stem diameters ≥ 17 mm. The two groups did not show significant differences in the rate of aseptic loosening (1.4% vs. 2.9%) and the rate of revisions (8.6% vs. 11%). The Kaplan-Meier survival for the MRP-TITAN stem in both groups together was 93.8% after 8.8 years. [Study group 95.7% after 8.54 years ; control group 93.1% after 8.7 years]. Radiologic evaluation showed no significant change in axial implant migration (4.3% vs. 9.3%; p = 0.19) but a significant reduction in proximal stress shielding (5.7% vs. 17.9%; p < 0.05) in the study group. Periprosthetic radiolucencies were detected in 5.7% of the study group and in 9.8% of the control group (p = 0.30). Radiolucencies in the proximal zones 1 and 7 according to Gruen occurred significantly more often in the control group without allograft augmentation (p ≤ 0.05).ConclusionWe present the largest analysis of the impaction grafting technique in combination with cementless distal diaphyseal stem fixation published so far. Our data provides initial evidence of improved bone regeneration after graft augmentation of metaphyseal bone defects. The data suggests that proximal metaphyseal graft augmentation is beneficial for large metaphyseal bone defects (Paprosky types IIC and III) and stem diameters of 17 mm and above. Due to the limitations of a retrospective and descriptive study the level of evidence remains low and prospective trials should be conducted.

Highlights

  • We present a descriptive and retrospective analysis of revision total hip arthroplasties (THA) using the MRP-TITAN stem (Peter Brehm, Weisendorf, GER) with distal diaphyseal fixation and metaphyseal defect augmentation

  • The present results suggest that reduced stress on the proximal femur with subsequent osteopenia resulting from diaphyseal fixation may be expected primarily in the absence of proximal metaphyseal defect augmentation

  • We present, to the best of our knowledge, the largest cohort on impaction grafting in combination with cementless distal diaphyseal stem fixation published so far

Read more

Summary

Introduction

We present a descriptive and retrospective analysis of revision total hip arthroplasties (THA) using the MRP-TITAN stem (Peter Brehm, Weisendorf, GER) with distal diaphyseal fixation and metaphyseal defect augmentation. Our hypothesis was that the metaphyseal defect augmentation (Impaction Bone Grafting) improves the stem survival. The long-term success of femoral revision arthroplasty depends on several factors. A third and crucial factor is the biological reconstruction of femoral bone defects, to restore a functional implant bed capable of bearing physiologic loads [1], and to downgrade the femoral defect situation to facilitate a possible subsequent revision procedure [2]. The consensus in the current literature is that implant fixation by filling the femoral defects with bone cement leads to poor long-term results and should not be recommended [3]. The femoral canal is filled with bone grafts to obtain a normally dimensioned implant bed, the implant is cemented [9]. Potential disadvantages include impaired union due to cement penetration into the graft [13] and the increased risk of postoperative femoral fractures at the level of osteolytic areas [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call