Abstract

This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call