Abstract

Thin-walled tubes are generally used as impact energy absorber in various application due to their ease of fabrication and installation, high energy absorption capacity and long stroke. However, the main drawback of plain tube is the high initial peak force. A concentric plunger in the form of tapered block is proposed to overcome this shortcoming while at the same time, improving the impact performance. Static and dynamic axial crushing were performed to determine the initial peak force (IPF), crush force efficiency (CFE) and specific energy absorption (SEA) for the concentric plunger with various taper angles. It was found that the concentric plunger affected the tube impact response. Comparison with plain circular tube was carried out and it was found that the concentric plunger improved the impact response of the tube especially in term of initial peak force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call