Abstract
The ballistic impact behavior of hybrid 3-dimentional woven composites (3DWC) is predicted through a novel numerical modeling technique and validated the outcome through experimental data. Continuum shell elements with Hashin failure criterion and cohesive surface contact algorithm with traction separation law are used to predict the damage behavior and failure mechanisms during the impact process at interply and intraply levels. Z-yarns are represented by the connector elements with uniaxial behavior having stress-based failure criterion. The proposed methodology predicted the different damage mechanisms during the impact process in comparison with the experimental data and estimated the residual velocities with acceptable accuracy. Different failure mechanisms incurred due to the hybrid nature of the material are also captured by the numerical simulation and the effect of z-yarns are truly depicted by the use of simple 1D elements over the different phases of perforation process. Overall, the finite element (FE) methodology by using simplest form of the elements, their constitutive and damage behavior gives promising results by sufficiently reducing the computational cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have