Abstract
Two-dimensional woven SiC/SiC composites fabricated by melt infiltration method were impact tested at room temperature and at 1316 °C in air using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 to 400 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical and scanning electron microscopy, and non-destructive evaluation (NDE) methods such as pulsed thermography, and computed tomography. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. Results indicate that at 115 m/s projectile velocity, the composite showed no noticeable surface or internal damage and retained its as-fabricated mechanical properties. As the projectile velocity increased above this value, the internal damage increased and mechanical properties degraded. At velocities >300 m/s, the projectile penetrated through the composite, but the composite retained ∼50% of the ultimate tensile strength of the as-fabricated composite and exhibited non-brittle failure. Predominant internal damages are delamination of fiber plies, fiber fracture and matrix shearing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have