Abstract

This paper aims to analyse the effect of coating, fabric layers and structural parameters on the impact resistance behaviour of warp knitted spacer fabrics used for protective clothing. For this purpose, six warp knitted spacer fabrics were produced by varying thickness and mesh structure and were coated with a silicone substrate. A drop-weight impact tester was used to determine the impact resistance characteristics of the samples. The results indicate that, the impact resistance properties of warp knitted spacer fabrics can be improved considerably by coating as reducing approximately 10 kN of the peak transmitted force. Also, the structural parameters such as fabric thickness and mesh structure have significant effects on impact resistance behaviour of the samples. The fabrics with higher thickness and smaller size mesh on the outer layers have better impact resistance properties. Additionally, the lamination of spacer fabrics can effectively improve the impact resistance characteristics of the spacer fabrics. The warp knitted spacer fabrics can be used as an energy absorbing material for body protection by varying their structural parameters, fabric lamination and/or by coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call