Abstract

Rubbing and impacting between a rotor and adjacent motion-constraining structures is a serious malfunction in rotating machinery. A shaver rotor-casing system with clearance and mass imbalance is modelled with two second-order ordinary differential equations and inelastic impact conditions. The dynamics is investigated analytically, as well as by numerical simulation. A Lyapunov exponent technique is developed to characterize the topologically different behavior as the parameters are varied. The dry friction coefficient and the eccentricity of the rotor imbalance were chosen to be the two variable parameters, the effect of which on the system dynamics is illustrated through phase plots, bifurcation diagrams, as well as Poincare maps. The results demonstrate the existence of both rubbing and impacting behavior. Depending on values of the parameters, rubbing motion in both the clockwise and counter-clockwise directions may occur. Within the impact regime, the impact behavior could be periodic, quasi-periodic or chaotic, as confirmed by the calculation of Lyapunov exponents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call