Abstract

The implementation of probabilistic neural networks (PNNs) with the Lyapunov exponents for Doppler ultrasound signals classification is presented. This study is directly based on the consideration that Doppler ultrasound signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making was performed in two stages: computation of Lyapunov exponents as representative features of the Doppler ultrasound signals and classification using the PNNs trained on the extracted features. The present research demonstrated that the Lyapunov exponents are the features which well represent the Doppler ultrasound signals and the PNNs trained on these features achieved high classification accuracies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.