Abstract
ABSTRACT This research offered an experimental examination of the effect of binder yarns, and 3D woven patterns on impact (Charpy and drop weight impact), and compression after impact (CAI) performance of seven (07) different kinds of 3D woven jute/green epoxy composites. Along with four (04) typical classifications of 3D woven reinforcements i.e., OLL, OTT, ALL, ATT, and three (03) novel (hybrid) 3D reinforcements i.e., H1 (OTT and ATT interlocking pattern), H2 (OTT and ALL interlocking pattern), H3 (OLL warp and weft interlocks “bidirectional”) were also developed on dobby weaving machine. OTT composite displayed the highest amount of impact strength during Charpy impact in both in-plane directions i.e., warp and weft in comparison with others due to the existence of the truly vertical binder yarns which is comparable with H1. While ALL sample exhibited the highest value of maximum load, work done, and energy absorbed during the 3 J and 6 J drop weight impact energies which is nearest comparable with hybrid 3 (H3) composite. H3 composite sample revealed the highest value of compression after impact (CAI) stress and modulus in both energy levels due to the presence of both warp and weft binder yarns in a single 3D structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have