Abstract

Seeds of the plant Lactuca sativa as a prototype of a mesoscopic, i.e. neither micro- nor truly macroscopic, biological test organism, were exposed during the Biocosmos 9 mission to cosmic heavy ions within stacks of visual track detectors in order to explore the not yet properly understood radiobiological effects of single heay ions. In such an investigation, the establishment of the geometrical correlation between their trajectories and the location of radiation-sensitive biological substructures is an essential task. We describe how this was achieved for biological test organisms, whose location and orientation had to be derived from contact photographs displaying their outlines and those of the holder plates only. The overall qualitative and quantitative precision achieved, as well as the contributing sources of uncertainties are discussed in detail. A precision of ≈= 10 μm was accomplished for the coordinates of particle trajectories, which is near the limit set by the mechanical precision and stability of the detector material. The precision of the impact parameter is limited by the uncertainty in the location of the internal structures, which at best is around 50 and at worst around 150 μm, but is still acceptable when compared with the extension of the sensitive structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.