Abstract

Abstract The protection of built cultural heritage is increasingly important due to climate change. Given that flooding is one of the most serious threats to the conservation of heritage objects, the goal of this study was to evaluate the effect of water and soluble salts on the mechanical strength of materials commonly used in old structures. An experimental analysis was conducted by wetting several types of conventional building materials (such as stone, lime mortar, and fired-clay brick), each characterised by distinct mechanical properties and porous structure. The impact of contamination with three types of soluble salts commonly found in historic buildings was also assessed. The results showed that the level of water saturation can have a significant effect on the mechanical properties of all the tested materials. In some cases, the sample heterogeneity surpassed the effect of water content on the mechanical behaviour. Brick and stone samples showed a similar trend in the strength behaviour. Brick had a flexural strength decrease of around 15% after 7 days of submersion in water and also after storage in an environment with high relative humidity. Mortar mixtures were more sensitive to the effect of water and salt solutions compared to stone and bricks. One-cycle of salt contamination followed by drying increased the mechanical strength of the tested materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.