Abstract

The aim of the present study was to investigate whether a single-compartment (SCM) and a multi-compartment (MCM) venous return model will produce significantly different time-delaying and distortive effects on pulmonary oxygen uptake (V̇o2pulm) responses with equal cardiac outputs (Q̇) and muscle oxygen uptake (V̇o2musc) inputs. For each model, 64 data sets were simulated with alternating Q̇ and V̇o2musc kinetics-time constants (τ) ranging from 10 to 80 s-as responses to pseudorandom binary sequence work rate (WR) changes. Kinetic analyses were performed by using cross-correlation functions (CCFs) between WR with V̇o2pulm and V̇o2musc. Higher maxima of the CCF courses indicate faster system responses-equal to smaller τ values of the variables of interest (e.g., τV̇o2musc). The models demonstrated a highly significant relationship for the resulting V̇o2pulm responses ( r = 0.976, P < 0.001, n = 64). Both models showed significant differences between V̇o2pulm and V̇o2musc kinetics for τV̇o2musc ranging from 10 to 30 s ( P < 0.05 each). In addition, a significant difference in V̇o2pulm kinetics ( P < 0.05) between the models was observed for very fast V̇o2musc kinetics (τ = 10 s). The combinations of fast Q̇ dynamics and slow V̇o2musc kinetics yield distinct deviations in the resultant V̇o2pulm responses compared with V̇o2musc kinetics. Therefore, the venous return models should be used with care and caution if the aim is to infer V̇o2musc by means of V̇o2pulm kinetics. Finally, the resultant V̇o2pulm responses seem to be complex and most likely unpredictable if no cardiodynamic measurements are available in vivo. NEW & NOTEWORTHY A single-compartment and a multi-compartment venous return model were tested to see whether they result in different pulmonary oxygen uptake (V̇o2pulm) kinetics from equal cardiac output and muscle oxygen uptake (V̇o2musc) kinetics. To infer V̇o2musc kinetics by means of V̇o2pulm kinetics, both models should only be used for V̇o2musc time constants ranging from 40 to 80 s. The resultant V̇o2pulm responses seem to be complex and most likely unpredictable if no cardiodynamic measurements are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.