Abstract

This investigation assessed the sensitivity of Mechanistic–Empirical Pavement Design Guide (MEPDG) outcomes to normalized axle load spectra representing various loading conditions observed in the Specific Pavement Studies Transportation Pooled Fund Study of the Long-Term Pavement Performance program. The goal was to determine what vehicle classes and axle types with a wide range of axle loading conditions are likely to cause differences in pavement design outcomes when the MEPDG is used. Significant differences found in the MEPDG outcomes support the need for characterization of axle loading beyond a single default value for heavy trucks that dominate vehicle class distributions, especially for Class 9 trucks. The absence of differences for lightweight and under-represented trucks indicates that load spectra from various sites could be combined to develop a single default for some vehicle classes and axle types. The effect of bias in weigh-in-motion (WIM) axle weight measurements on the normalized axle load spectra estimates and the associated MEPDG outcomes was also investigated. It was found that drift in WIM system calibration leading to a more than 5% bias in mean error between true and WIM-measured axle weight could lead to significant differences in MEPDG design outcomes. These results were used to develop recommendations for creating axle loading defaults for the MEPDG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call