Abstract
Abstract Vegetation is affected by hydrological cycle components that have altered under the influence of climate change. Therefore, it is necessary to investigate the impact of hydrological cycle components on regional vegetation growth, especially in alpine regions. In this study, we employed multiple satellite observations to comprehensively investigate the spatial heterogeneity of hydrological cycle components in the Yarlung Zangbo River (YZR) basin for the period 1982–2014 and to determine the underlying mechanisms driving regional vegetation growth. Results showed that the normalized difference vegetation index (NDVI) values during May–October were high, and the NDVI values increased from the upper reaches of the YZR to its lower reaches, reflecting the enhancement of vegetation growth. Annual precipitation, precipitation-actual evapotranspiration (AET), and snow water equivalent (SWE) all affect terrestrial water storage in the YZR basin through changes in soil moisture (SM), i.e., SM is the intermediate variable. Seasonal variability of vegetation is controlled mainly by precipitation, temperature, AET, SM anomaly, and SWE. Groundwater storage anomalies (GWA) and terrestrial water storage anomalies (TWSA) were not reliable indicators of vegetation growth in the YZR basin and the midstream and downstream regions. The effects of GWA and TWSA on vegetation occurred in the upstream region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Hydrology Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.