Abstract

Abstract Assessment of the impact on air quality for combustion sources should be carried out using advanced modelling systems with chemical transformation modules taken into account, especially for the facilities characterized by significant emission of gaseous air pollutants (including SO2). This approach increases the reliability of the obtained evaluation results by modelling the formation of secondary inorganic aerosol (SIA) in the air which can substantially contribute to PM10. This paper assesses in this regard selected chemical transformation modules (MESOPUFF, RIVAD/ARM3, ISORROPIA/RIVAD) available in the CALPUFF model (v. 6.42) and its application in the atmospheric dispersion modelling of air emissions from a coal-fired large combustion plant (LCP) not equipped with a flue gas desulphurization (FGD) system. It has been proven that consideration an additional mechanism of secondary sulfate aerosol formation in aqueous phase in the ISORROPIA/RIVAD module (AQUA option) causes a significant increase in the annual average concentration of PM10 in the air compared to the other considered options, along with the calculation variant which excludes chemical transformation mechanisms. Type of the selected chemical transformation module has no significant effect on the results of modelled NO, NO2 and NOx concentrations in the air. However, it can lead to different SO2 results, especially for annual averaged, and in some points, for the hourly averaged concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.