Abstract

We studied the impact of ultraviolet (UV) irradiation on stress–strain characteristics, derived from uniaxial stretching measurements, and the molecular structure (photoinduced changes) of syndiotactic 1,2-polybutadien, a polymer with thermoplastic elastomer properties. Uniaxial stretching stress–strain curves are recorded for samples subjected to UV irradiation for different times and the effects UV irradiation has on the stress–strain behavior of polymers are analyzed. Long UV irradiation is found to markedly increase the hardening of polymers: Young’s modulus and yield strength increase, while the fracture strain decreases. At the same time, we observe a sharp increase in polymer molecular weight and its considerable oxidation that particularly involves surface layers. The mechanisms of cross-linking between macromolecules and their simultaneous oxidation induced by exposure to UV light are discussed along with the role these processes play in evolution of the physical mechanical properties under UV irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.