Abstract
The design and the performance of an innovative shell-and-tube evaporator using round copper microchannels are presented in this article. This prototype has been designed aiming at the minimization of the refrigerant charge, which can be required by safety or environmental restrictions. Experimental data of heat transfer and pressure drop are reported in the present article. The measurements have been obtained with two different evaporator inlet headers and two different working fluids (i.e., R22 and R410A) to investigate the mutual influence of the design of the distribution system and the refrigerant properties on possible maldistribution issues. A computational procedure implementing different correlations has also been developed and validated against experimental data; this procedure allows the prediction of the performance of the same evaporator with a hydrocarbon, such as propane, and comparison of the prototype to a brazed-plate heat exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.