Abstract

We found that the exposure of a Co/Pt bilayer to air will result in a trace amount of oxidation at the Co/Pt interface, while the Pt layer is immune to oxidation. The appearance of CoOx results in a negative spin Hall magnetoresistance and unconventional spin–orbit torques (SOTs), which are observed through temperature-dependent transport and spin-torque ferromagnetic resonance measurements. These results can be understood by considering CoOx as an individual magnetic layer between Pt and Co, with two important characteristics: (1) its magnetization is aligned in the plane that is perpendicular to the magnetization of Co and (2) the spin transparency of CoOx increases with increasing temperature. These results help us understand the features of spin transport at the interface when oxidation occurs and further indicate that trace amounts of oxidation can be a highly effective method to control SOT in magnetic heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call